
 APRIL 2022

Camunda Platform 7
Reference Architecture

RUNTIME CONTAINER
(APPLICATION SERVER)

JAVA APPLICATIONS

PROCESS ENGINE
(CONTAINER SERVICE)

REMOTE APPLICATIONS

STANDALONE
PROCESS ENGINE

SERVER

SHARED DATABASE

CLUSTERED
PROCESS
ENGINE

APPLICATIONS

Executive Summary

Camunda Platform 7 offers significant flexibility
with regards to architecture, deployment
options, programming languages and supported
infrastructure. This document covers Camunda
process engine implementation options, supported
infrastructure specifications, hardware sizing and
recommended database management systems.

Process Engine Implementation
Options

The flexibility of Camunda Platform 7 is
demonstrated with this sampling of implementation
options. Typically, initial forays with Camunda use
Spring Boot or a shared container though Docker is
becoming a more popular option. All options work
equally well and as a result there is no one
recommended implementation option. And you don’t
have to stick to one approach for all use cases. Given
our licensing flexibility you can create as many
environments as needed in any topology required.
Only execution metrics in your production
environments count toward your license. No need to
count CPUs or servers. Development and QA
environments are unlimited.

Embedded Process Engine (Microservice)

The process engine is added as an application library
to a custom application. This way, the process engine
can easily be turned on or off with the application
lifecycle. It is possible to run multiple embedded
process engines on top of the same shared database.

Shared, Container-Managed Process
Engine

The process engine is started inside the runtime
container (servlet container, application server),
provided as a container service and can be shared by
all applications deployed inside the container.

camunda.com

Standalone (Remote) Process Engine
Server

The process engine is provided as a network service.
Different applications can interact with it through
remote communication, usually via the built-in
REST API. Other channels such as SOAP or JMS are
possible but need to be implemented by users.

Cluster Model

To provide scale-up and fail-over capabilities, the
process engine can be distributed to different
nodes in a cluster. Each process engine instance
then connects to a shared database. The individual
process engine instances do not maintain session
state across transactions. Whenever the process
engine runs a transaction, the complete state is
flushed out to the shared database. This makes it
possible to route subsequent requests which do work
in the same process instance to different cluster
nodes. This model is very simple and easy to manage.

APRIL 2022

TOMCAT

DOCKER IMAGE

DATA SOURCE

DATABASE

YOUR
APPLICATION

CAMUNDA

WEB APPS REST

Small Supports most use cases, typical server
configuration 1-2 CPU cores, 1-8 GB
RAM

Medium Higher volume environments averaging
more than 100 instances per second,
typical server configuration 2-4 CPU
cores, 4-16 GB RAM

Large Extreme volume environment or one
where CPU intensive code has been
deployed, typical server configuration
4-64 CPU, 16-128 GB RAM

Multi-Tenancy Models

To serve multiple, independent parties with one
Camunda installation, the process engine supports
the following multi-tenancy models:

• Table-level data separation by using different
database schemas or databases

• Row-level data separation by using a tenant
marker

Users should choose the model which fits their data
separation needs. Camunda’s APIs provide access to
processes and related data specific to each tenant.

Supported Infrastructure Options

Camunda Platform 7 can run in any Java-runnable
environment. As of version 7.17, Camunda Platform 7
is supported with our QA infrastructure in the
following environments.

Containers for Runtime Components

Application-Embedded Process Engine:

• All Java application servers
• Camunda Spring Boot Starter: embedded Tomcat
• Camunda Engine Quarkus Extension

Container-Managed Process Engine and Web
Applications:

• Apache Tomcat 9.0
• JBoss EAP 7.0 / 7.1 / 7.2 / 7.3 / 7.4
•

•

Wildfly Application Server 13.0 / 14.0 / 15.0 /
16.0 / 17.0 / 18.0 / 19.0 / 20.0 / 21.0 / 22.0 /
23.0 / 26.0
IBM WebSphere Application Server 9.0
(Enterprise Edition only)

• Oracle WebLogic 12c (12R2) / 14 (Enterprise
Edition only)

Docker

Pre-built Docker images of Camunda Platform 7 —
Enterprise Edition are available via registry.
camunda.cloud. Packaging the components shown
below, the Camunda Docker images are suitable for
the remote process engine architecture.

Hardware and Sizing

Process Engine

High Availability: It is recommended to run the
process engine on at least two nodes to ensure high
availability. The nodes do not have to form a proper
cluster in terms of an application server cluster. It is
sufficient to connect two identical nodes to the same
database schema.

Virtualization: Camunda can be run on virtualized
systems. This does not impact licensing because
licenses are not bound to CPU cores.

Resource requirements are based on expected
workloads. Listed below are Camunda’s
recommendations:

https://camunda.com/enterprise/
https://registry.camunda.cloud
https://registry.camunda.cloud

To learn more, please visit our Best Practices resource center.

A cluster of two small servers should suffice most
common projects. Larger configurations should be
considered when:

• The system needs to handle more than 100
process instances/second

• The system needs to support CPU intense
delegation code or locally running services like
data aggregation or transformation

• The code or deployment call for unique
requirements

Load testing of deployed applications is the best
approach for determining hardware sizing.

In addition, depending on the container the system
requires approximately 500 MB to 1 GB of disk space.
Camunda recommends at least 2 GB of storage
in order to store enough logs for troubleshooting
purposes.

Database Management Systems

To ensure availability, databases should be clustered
and running on at least two nodes at any given time.

Recommended Database types

A large variety of database management systems
(DBMS) are supported. Camunda recommends
Oracle or PostgreSQL for production and H2 for
development.

• MySQL 5.7 / 8.0
• MariaDB 10.3 / 10.6
• Oracle 12c / 19c
• IBM DB2 11.1 (excluding IBM z/OS for all

versions)
• PostgreSQL 10 / 11 / 12 / 13
• Amazon Aurora PostgreSQL compatible with

PostgreSQL 10.4 / 10.7 / 10.13 / 12.4
• Microsoft SQL Server 2014 / 2016 / 2017 /

2019 (more information)
• Microsoft Azure SQL with Camunda-supported

SQL Server compatibility levels (more
information)

• H2 2.0 (not recommended for production or
cluster mode; more information)

• CockroachDB v20.1.3 (more information)

Database Clustering and Replication

Clustered or replicated databases are supported when:

• The communication between Camunda Platform 7
and the database cluster matches the
corresponding non-clustered, non-replicated
configuration

• The cluster configuration guarantees the behavior
of READ-COMMITTED isolation level

Java

Java runtimes are supported as long as they are
supported by the application server or container.

Database Sizing

The amount of space required on the database
depends on

1. History Level: Turning off history saves a huge
amount of tablespace as you only keep current
runtime data in the database. However, it is
advised to keep it to “FULL” to get the maximum
audit logging from the process engine.

2. Process Variables must be written to the
database (in a serialized form such as JSON).
With the history level “FULL,” an entry is inserted
into history tables every time a variable is
changed, remembering the old value. With big
data objects stored and changed often, this
requires a lot of space.

When calculating database size, you should also
clarify if and how often you will be cleaning up
historical data. The real space occupied within your
database depends very much on your database
product and configuration and there is no simple
formula to calculate this space.

ABOUT CAMUNDA
Camunda is the leader in process orchestration software.
Our software helps orchestrate complex business
processes that span people, systems, and devices. With
Camunda, business users collaborate with developers to
model and automate end-to-end processes using BPMN-
powered flowcharts that run with the speed, scale, and
resiliency required to compete in today’s digital-first world.

https://docs.camunda.io/docs/components/best-practices/overview/
https://docs.camunda.org/manual/latest/user-guide/process-engine/database/mssql-configuration/
https://docs.camunda.org/manual/latest/user-guide/process-engine/database/mssql-configuration/#azure-sql-compatibility-levels-supported-by-camunda
https://docs.camunda.org/manual/latest/user-guide/process-engine/database/mssql-configuration/#azure-sql-compatibility-levels-supported-by-camunda
https://docs.camunda.org/manual/latest/introduction/architecture/
https://docs.camunda.org/manual/latest/user-guide/process-engine/deployments/
https://docs.camunda.org/manual/latest/user-guide/process-engine/database/cockroachdb-configuration/
https://docs.camunda.org/manual/latest/user-guide/process-engine/history/
https://docs.camunda.org/manual/latest/user-guide/process-engine/variables/

