
Camunda Con 2023

Process Modelling of
Smart Contracts

Table of
contents

01;
Introduction
and Context

Problem
Statement

Business Need

Complexity
with Scale

Visual
Business

Processes for
Smart

Contracts

Proposed
Architecture

02; 03;

04; 05; 06;

Introduction

Sushil Anand
Senior Software Engineer

Walmart

Ayush Seth
Senior Manager

Walmart

Where we are

• Adopting a platform-centric method for Business Process
Management which could be adopted organization wide.

• Implementing an orchestration layer that connects the
user interface with various process transitions.

• Leveraging template-driven strategies for the UI ensures
uniformity and a streamlined interface.

• Introducing a management console for template, end-to-
end process, and rule orchestration.

• Broaden orchestration across various sectors like smart
contracts, ensuring all stakeholders are incorporated.

• The smart contracts demand specific language constructs,
develop interoperability between these language
constructs.

• Integrate smart contracts/ rules with minimum human
touchpoint within the blockchain mechanism

Where we are marching towards

Context

• Organizations are currently using blockchain and smart contracts in many aspects of its
business, from supply chain vendor contracts to other contracts in the retail business.

• Blockchain-based systems enable teams to build trustworthy applications, but they also
introduce significant new challenges with regards to stakeholder visibility.

• It interestingly brings in a challenge of restricting all the stakeholders to take part in the
modelling of the contract.

• Most of the current smart contract programming languages need specialised knowledge of the
respective programming constructs.

• If we really focus on just the “contract” part of the smart contract it often deals with plain
business rules.

• These business rules are usually driven by the use case which we are trying to solve rather than
being specific to any programming constructs.

Problem Statement

• Every big enterprises are adopting blockchain and smart contracts, yet many are unaware of the
impact on its core revenue-generating business processes

• Business facing teams are not always required to know the internal details of the technology
aspects used in the solutions.

• In case of end user facing smart contracts, it gets difficult to tie the end-to-end flow in terms of
business and how the underlying code and tech is functioning.

• Analyzing impact for any change gets difficult and makes even a small change very critical due
to lack of centralized place for the end-to-end flow.

• Smart Contracts are always very business centric so it should be decoupled with the underlying
technology and can be flexible in terms of any forward-looking changes we want to make.

• Company’s core business processes nearly always span multiple microservice, making it difficult
to gain visibility into the current state of an end-to-end process and to ensure that errors within
a process are handled reliably and consistently

Problem Statement

Impact on Revenue-Generating Business Processes

• Blockchain based systems provide teams to build
trustworthy applications but also introduce significant
new challenges because a company’s core business
processes nearly always span multiple microservice,
making it difficult to gain visibility into the current
state of an end-to-end process and to ensure that
errors within a process are handled reliably and
consistently

• Core and highly revenue generating business processes
and rules started to be written in developer centric
programming languages like Solidity Rust etc

• Very Less focus on the revenue generating part of the
business process

• Huge cost to implement process changes as the
process flows are not abstracted

Business Needs

• Ability to visualise and represent the entire flow at a
single place.

• Analyse the impact of any small change without
getting in the nitty gritty of the code and the
programming constructs

• Rapidly bring in new changes at any point of time and
easy rolling out across the chain of suppliers.

• Manage visibility while executing a business process.

• Having a standard business contract between the
business process, backend microservices, end users
and front-end channels.

Solution Overview

Domain and Spread

Blockchain

• Blockchains are a new way to efficiently store and access data. Also known as distributed ledger
technology, blockchains are publicly available records of transactions that can be accessed by
anyone, anywhere.

• A blockchain is thus a shared ledger of transactions where data cannot be altered or deleted
once created. It provides a transparent and accessible method to track information, along with
the guarantee that the data available is correct and has not been changed.

• Blockchains are typically managed by a peer-to-peer (P2P)computer network for use as a
public distributed ledger, where nodes collectively adhere to a consensus algorithm protocol to
add and validate new transaction blocks.

Smart Contracts Process Definitions

1.
Smart contracts are on-chain pieces of programs; these are lines of code
deployed on blockchains. Both “smart” and “contract” point to the core

characteristics of these on-chain programs.

A BPMN process is a sequence of activities leading from some defined
triggering event to one or more possible end states. All possible sequences
leading from the start event to some end state are defined by the process

model.

2.
They are “smart” because they are fully automated and once its deployed

smart contracts do what they are programmed to do without any
intermediary.

BPMN once deployed works in a similar automated way to execute in
sequence what they are designed to execute.

3.
Furthermore, the “contract” part indicates a binding agreement

these pieces of software enforce.
Process Definitions works as an agreement between the client application and
the business logic. It ensures the execution always follows the defined path.

4.
Essentially, smart contracts trigger specific predefined actions when

certain predefined conditions are met. One of the most popular smart
contract programming language is Solidity.

Essentially, Process Definitions are a set of predefined flows which execute
sequentially based on specific triggers and input. One of the most popular

workflow and decision automation platform is Camunda

Programmatic Smart
Contracts

• Consider a smart contract which defines a basic ERC-20 token written
in solidity programming language. We call this token “Basic Token”.

• Below are the few things which the contract has

• InitialSupply - Variable that stores the initial supply of tokens

• balances - A Mapping that stores the balance of each address that
hold the token.

• transfer - A function that transfers tokens from the senders
account to a specified _recipient address. This function needs
that the sender has sufficient tokens to transfer, the recipient is
not the sender, and the transfer does not cause an overflow.

• balanceOf - Is a function that returns the token balance of a
specified _owner address

• receive - A function that is called when the contract receives
Ether. It emits the received event.

Using Visual Business Processes for Smart Contracts

1

1

2
2

3

3

4

4

55

Using Visual Business Processes for Smart Contract

System Design

When converting Business Process Model and Notation (BPMN) elements to
Solidity, the focus is on translating the workflow and logic of a BPMN diagram
into a smart contract. To facilitate this process, you may create custom BPMN
elements that represent the unique features and functions of smart contracts.
Here are a few custom BPMN elements you might want to create:

• Contract Element: Represents the overall smart contract, including its
name, variables, and functions.

• State Variables Element: Represents the storage variables in a smart
contract that hold its state and data.

• Function Element: Represents a function in the smart contract, including
its name, input parameters, and output.

• Modifier Element: Represents a modifier, which is a reusable piece of
code that can be applied to functions to control their behaviour.

• Event Element: Represents an event, which is used to emit notifications
to external applications or the blockchain.

•

• Access Control Element: Represents the access control mechanisms, such as
roles or permissions, that govern which addresses can interact with specific
functions in the smart contract.

• Function Element: Represents a function in the smart contract, including its
name, input parameters, and output.

• External Call Element: Represents interactions with other smart contracts or
external functions on the blockchain.

• Conditional Gateway Element: Represents a decision point in the smart
contract based on conditions, such as comparisons or logical expressions.

• Loop Element: Represents loops or iterations within a smart contract
function, which can be used for repetitive tasks or bulk processing.

• Exception Handling Element: Represents error handling and exception
management mechanisms in the smart contract, such as revert, require, or
assert statements.

•

Proposed Architecture The system will have an Administrative user interface (Admin Portal) which will have mainly
three panels. The UI will help respective stakeholders to participate in authoring, generation,
and deployment.

1. Process Modelling Panel – This panel will help the stakeholders in modelling the Business
Process. The authored business process could be persisted. The BPMN modelling UI will
support custom BPMN elements which are needed for modelling smart contracts.

2. Contract Generation Panel – The Contract generation panel will have controls needed to
pick any available business process and could be converted to a smart contract. The
generated smart contract will be stored in the smart contract store for future use.

3. Contract Deployment Panel – The authored smart contracts could be deployed into
available blockchain networks. The deployment can be first done in a test-net and then
propagated to a main-net.

4. Workflow Definition - This layer will parse the business model created by the stakeholders
validate and store for future use.

5. Business Process to Smart Contract converter – This layer will convert an
authored business process into a valid solidity file.

6. Smart Contract Validator - This component will validate the generated smart contract and
run sanity tests to make sure the auto generated contract. All validated smart contracts
will be stored in a smart contract store and the development team can view, edit, and
version these files.

7. APIs for the above: There will be majorly 3 set of APIs responsible for handling the
modelling of business process, smart contract generation and smart contract validation

1

2

3

4

5 6

DEMO

Conclusion

Key findings/short comings Possible future direction to build on the work.

• Blockchain based systems provide teams to build trustworthy applications this is one of our key
efforts to bring out the company’s core business processes which is buried under the realms of
coding constructs leading to low visibility across stakeholders.

• Only one critical aspects of this flow is expressed in detail using this paper the finer details of
the authoring and custom element needs to be taken up during a detailed implementation.

• Currently we have leveraged Ethereum blockchain for our POCs but the solution could well be
extended for any blockchain use cases.

• For smart contracts and choice of programming language we restricted our research to only
solidity and this could very well be extended for other smart contract programming languages

Thank you!();

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

