
Combining Orchestration and 
Choreography for a Clean 
Architecture

Andreas Riepl & Thomas Heinrichs 



About Us

Thomas Heinrichs 
BPM Consultant

Augsburg, Germany 

Andreas Riepl
Full-Stack Developer



1

2

3

What to expect

Reviewing the low code approach
■ How does a low code implementation look like?
■ What are adventages and downsides of this approach?

Cleaning up
■ What is clean architecture?
■ How to implement a hexagonal architecute?
■ How to write engine independent code?

Scaling up
■ What is Domain Driven Design?
■ What is Choreography?
■ What are the best practices for domain events?



Demo –
Reviewing the initial 
state



Reviewing the low code approach

■ Rest Connectors enable non-
technical users to create and 
modify automated processes

■ Calling external services with 
the low code approach reduces 
development time and costs

■ Lowers the barrier to entry for 
process automation

Advantages

■ Tighter coupling and violation of 
the separation of concerns 
principle due to Connectors

■ Can easier lead to a vendor-
lock-in problem 

■ Need for a greater dataset flow 
through the process instance

■ Misuse of the BPMN standard 

Downsides



Cleaning Up



“At its core, clean architecture divides 
a software system into parts, with each 
part having a specific responsibility and 
clear dependencies.”

Definition: Clean Architecture

Benefits: Increased Maintainability, Testability, Scalability, Felixibility, Collaboration 



Writing Hexagonal 
Integrations

Ports and Adapters
■ We organise the hexagonal architecture into 

layers
■ The outermost constist of adapters that translate 

between the application and other systems

No outgoing dependencies

■ All dependencies point toward the center
■ The Domain has no dependency towards the 

Use-Case or an Adapter

Benefits

■ Truly technology neutral application core
■ Easily adaptable to new technical 

surroundings 
■ Far easier maintainable 

Integration Component
Using Hexagonal Architecture

Reading recommendation: Get your hands dirty with clean architecture

https://www.google.de/books/edition/Get_Your_Hands_Dirty_on_Clean_Architectu/zyOzDwAAQBAJ?hl=en&gbpv=1&printsec=frontcover


Clean Architecture Diagram



Clean Architecture Diagram



Demo –
Implementation of a 
hexagonal 
Architecture



Scaling up



Orchestration and Choreography 
- excurse

■ Uses command-driven
communication

Command = Sender wants 
something to happen. It has an 
intent. Recipient does not know who 
issued the command

Orchestration

■ Uses event-driven
communication 

Event = Something happended in the 
past. It is a fact. Sender does not 
know who picks up the event. 

Choreography



Domain Driven Design 

“Domain Driven Design is an approach to 
software development that centres on 
programming a domain model that has a 
rich understanding of the processes and 
rules of a domain.”

Martin Fowler



Bounded Context

DDD devides up a large system into 
Bounded Contexts, which can have a 
unified model

Bounded Contexts have both, unrelated 
concepts but also some shared ones

Acts as a central patterns and allows to 
create dependencies based on the 
domain logic



Evolving our architecture



Throwing the right domain events
- Best Practices

Use clean names and do 
not reuse events

Throw events when you 
manipulate data (e.g. 
create, update, delete) 

Do not expect something in 
return after having thrown 
the event

Try to use it only for 
communication out of the 
bounded context



Demo –
Choreography 
combined with 
Orchestration



Key 
Takeaways

Design your services technology and
engine neutral 

Use Domain Events for communication 
outside the bounded context

Gain better maintainability by using a 
hexagonal architecture 

Decouple your architecture with clear 
responsibilities for multiple teams



Thanks for listening! 
https://github.com/FlowSquad/miranum-consulting/tree/main/restaurant-showcase

https://github.com/FlowSquad/miranum-consulting/tree/main/restaurant-showcase

